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Dimethylaluminum or ethylzinc complexes of highly fluorinated tris-
(pyrazolyl)borate ligand [HB(3,5-(CF3)2Pz)3]- can be obtained in
excellent yield from the reaction between the silver adduct [HB-
(3,5-(CF3)2Pz)3]Ag(THF) and the metal alkyl reagent Me3Al or Et2-
Zn. The X-ray crystal structure of [HB(3,5-(CF3)2Pz)3]AlMe2 shows
that the tris(pyrazolyl)borate ligand coordinates to the aluminum
center in κ2-fashion. [HB(3,5-(CF3)2Pz)3]ZnEt features the typical
κ3-bonded ligand.

The chemistry of metal complexes containing fluorinated
ligands like [HB(3,5-(CF3)2Pz)3]- is of current interest.1,2

Such highly fluorinated ligands endow exceptional thermal
and/or air stability on the complexes. For example, some of
the interesting complexes of silver(I) that have been isolated
using fluorinated tris(pyrazolyl)borate ligands include [HB-
(3,5-(CF3)2Pz)3]AgL where L) CO,3 CH2dCH2,4 HCtCH,4

ethylene oxide,5 NNNAd,6 NNC(CO2Me)2.7 Most of these
molecules represent the only structurally characterized
compounds of the type YAgL (where Y) anionic auxiliary
ligand) reported to date. Compounds like [HB(3,5-(CF3)2-
Pz)3]Ag(THF) show useful catalytic properties as well.1,8 For
example, it catalyzes the C-Cl bond activation reactions
under mild conditions.8 Silver(I) complexes of nonfluorinated
ligands like [HB(3,5-(Me)2Pz)3]- are, in general, thermally

and photochemically less stable.9,10This is due to the relative
ease of reducing silver(I) to metallic silver by the B-H
moieties present in these electron-rich ligand systems.

Synthesis of metal adducts containing weakly coordinating
ligands (e.g., highly fluorinated ligands) are not straightfor-
ward.11 Metal halides (L′M-Cl) do not easily undergo salt
elimination reactions with commonly used alkali metal salts,
when large, weakly coordinating anions are involved. Thal-
lium and silver salts are often employed to drive the reaction
toward products. Even then, the results are not always
predictable. For example, the silver salt [HB(3,5-(CF3)2Pz)3]-
Ag(toluene) reacts successfully with GaI and InCl to form
[HB(3,5-(CF3)2Pz)3]Ga and [HB(3,5-(CF3)2Pz)3]In, respec-
tively.12 It also serves as a good ligand transfer agent for
some transition metal ions.13 However, the reaction between
[HB(3,5-(CF3)2Pz)3]Ag(toluene) and M(Cl)[(n-Pr)2ATI] (M
) Ge or Sn) does not lead to the expected silver halide
precipitate. Instead, 1:1 adducts, [HB(3,5-(CF3)2Pz)3]AgGe-
(Cl)[(n-Pr)2ATI] and [HB(3,5-(CF3)2Pz)3]AgSn(Cl)[(n-Pr)2-
ATI], featuring unsupported Ag-M bonds were formed in
high yield.14 Arrested halide abstraction has been observed
with silver salts of other weakly coordinating anions as
well.11,15-17 Thus, there is a need for developing new methods
for introducing large, weakly coordinating ligands to metal
ions. In this paper, we describe the use of an alkyl group
metathesis process to introduce the [HB(3,5-(CF3)2Pz)3]-

ligand to an aluminum and a zinc center.
Treatment of [HB(3,5-(CF3)2Pz)3]Ag(THF) with AlMe3

and ZnEt2 led to [HB(3,5-(CF3)2Pz)3]AlMe2 and [HB(3,5-
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(CF3)2Pz)3]ZnEt, respectively (Scheme 1).18,19Products were
isolated in quantitative yield. This represents an interesting
new route to prepare aluminum and zinc alkyl compounds
bearing weakly coordinating ligands. These reactions are
accompanied by the deposition of a black precipitate. This
is presumably due to the decomposition of expected me-
tathesis products MeAg and EtAg. Alkyl silver(I) compounds
like MeAg and EtAg are highly unstable (above-50 °C)
both photochemically and thermally, and they decompose
easily to metallic silver.20 The treatment of the indium(I)
adduct [HB(3,5-(CF3)2Pz)3]In with ZnEt2 also leads to [HB-
(3,5-(CF3)2Pz)3]ZnEt. [HB(3,5-(CF3)2Pz)3]AlMe2 and [HB-
(3,5-(CF3)2Pz)3]ZnEt are colorless solids. These compounds
dissolve in most common organic solvents (e.g., toluene,
hexane, ether, CH2Cl2) and may be handled in air without
notable decomposition.

Solution 1H and 13C NMR data of [HB(3,5-(CF3)2Pz)3]-
AlMe2 in C6D6 at room temperature indicate the presence
of three equivalent pyrazolyl groups and two equivalent
methyl groups (similar to that observed for the nonfluorinated
analogue [HB(3,5-(Me)2Pz)3]AlMe2).21 The 19F NMR spec-
trum of [HB(3,5-(CF3)2Pz)3]AlMe2 displays two signals
corresponding to the trifluoromethyl groups at the pyrazole
ring 3- and 5-positions. Fluorines of the CF3 groups at the
pyrazolyl 5-position show coupling to the proton of the B-H
moiety (5J ) 3.4 Hz).

The X-ray crystal structure of [HB(3,5-(CF3)2Pz)3]AlMe2,
however, shows that the tris(pyrazolyl)borate ligand coor-

dinates to the aluminum center inκ2-fashion (Figure 1).22

The uncoordinated pyrazole ring plane is nearly perpendi-
cular to the C2-Al-C1 plane (∼100°, see Figure 2). The
Al ‚‚‚N32 distance is 3.76 Å. The aluminum center adopts a
distorted-tetrahedral geometry, and the C-Al-C angle is
large at 128.5(2)°, but not as large as the C-In-C angle in
[HB(3,5-(CF3)2Pz)3]InMe2 (146.0(2)°).23 Significant devia-
tions from typical tetrahedral angles have been observed in
other related group 13 metal adducts.24,25 For comparison,
the Al-N distances and C-Al-C angle of theκ2-bonded
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Scheme 1. Synthesis of Aluminum and Zinc Alkyl Compounds
Using [HB(3,5-(CF3)2Pz)3]Ag(THF)

Figure 1. Molecular structure of [HB(3,5-(CF3)2Pz)3]AlMe2 (hydrogen
atoms have been removed for clarity). Selected bond lengths (Å) and angles
(deg): Al-C(1) 1.933(4), Al-C(2) 1.952(4), Al-N(12) 2.004(3), Al-N(22)
2.014(3), N(11)-N(12) 1.370(4), N(11)-B 1.549(5), N(21)-N(22) 1.366-
(4), N(21)-B 1.546(5), N(31)-N(32) 1.359(4), N(31)-B 1.564(5); C(1)-
Al-C(2) 128.5(2), C(1)-Al-N(12) 111.03(15), C(2)-Al-N(12) 104.3(2),
C(1)-Al-N(22) 108.57(15), C(2)-Al-N(22) 104.6(2), N(12)-Al-N(22)
94.45(12), N(21)-B-N(11) 108.6(3), N(21)-B-N(31) 111.1(3), N(11)-
B-N(31) 105.6(3).

Figure 2. A side view of [HB(3,5-(CF3)2Pz)3]AlMe2 (hydrogen and
fluorine atoms on carbons have been removed for clarity).
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tris(pyrazolyl)borate adduct [HB(3-(t-Bu)Pz)3]AlEt2 are 1.990-
(3) Å, 1.990(4) Å, and 127.6(2)°, respectively.25

The crystal structure also shows that there are two fluorine
atoms (F16C and F26C) pointed toward the aluminum center
at a distance of 2.845 and 2.886 Å (for comparison, sum of
van der Waals radii of Al and F) 3.40 Å).26,27 These
observations suggest the presence of weak Al‚‚‚F-C interac-
tions. Such bonding interactions are of interest28 and may
contribute to the reduced reactivity at the aluminum center
toward molecules like O2. Steric effects may also account
for such stability as in the oxygen stable, alkylaluminum
compounds like Me2Al(3,5-(Me)2Pz)2AlMe2.25,29Comparison
of solid-state features of [HB(3,5-(CF3)2Pz)3]AlMe2 to room-
temperature solution NMR spectroscopic data suggests that
it is fluxional on the NMR time scale. Both fluxional and
nonfluxional tris(pyrazolyl)boratoaluminum complexes have
been reported in the literature.21,25

NMR spectroscopic features corresponding to the [HB-
(3,5-(CF3)2Pz)3]- moiety are very similar between the
ethylzinc and dimethylaluminum adducts. Solid-state struc-
tures, however, are different. In contrast to the aluminum
complex, the [HB(3,5-(CF3)2Pz)3]ZnEt features aκ3-N,N,N-
bonded tris(pyrazolyl)borate ligand (Figure 3).30 The zinc
center is tetrahedral. The Zn-C bond length of 1.959(6) Å
is not very different from those observed for the nonfluori-
nated analogues like [HB(3,5-(Me)2Pz)3]ZnMe (1.981(8) Å)
or [HB(3-(Ph)Pz)3]ZnMe (1.950(4) Å).31 There are no
significant Zn‚‚‚F contacts (the closest Zn‚‚‚F distance is 3.47
Å).

A large number of tris(pyrazolyl)boratozinc complexes
have been investigated due to their importance in catalysis
(e.g., lactide polymerization) and bioinorganic chemistry.10,31-36

A few poly(pyrazolyl)boratoaluminum complexes are also

known.21,24,25,29,31,37,38The synthesis of these zinc and alu-
minum compounds typically involves the use of alkali metal
or thallium salts of tris(pyrazolyl)borates. This work repre-
sents the first successful use of silver tris(pyrazolyl)borate
complexes as ligand transfer agents. We have reported the
use of indium reagents for the synthesis of zinc adducts as
well. New methods of ligand transfer such as those described
in this paper are particularly important in weakly coordinating
ligand chemistry since alkali metal salts often serve as poor
ligand transfer agents.11
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Figure 3. Molecular structure of [HB(3,5-(CF3)2Pz)3]ZnEt (hydrogen
atoms have been removed for clarity). Selected bond lengths (Å) and angles
(deg): Zn-C(1) 1.959(6), Zn-N(12) 2.121(4), Zn-N(22)A 2.127(3), Zn-
N(22) 2.127(3), N(11)-N(12) 1.377(6), N(11)-B 1.549(7), N(21)-N(22)
1.363(4), N(21)-B 1.555(5), B-N(21)A 1.555(5), C(1)-C(2) 1.442(14);
C(1)-Zn-N(12) 126.5(2), C(1)-Zn-N(22)A 127.69(13), N(12)-Zn-
N(22)A 87.06(11), C(1)-Zn-N(22) 127.69(13), N(12)-Zn-N(22) 87.06-
(11), N(22)A-Zn-N(22) 87.18(16), N(11)-B-N(21)A 108.6(3), N(11)-
B-N(21) 108.6(3), N(21)A-B-N(21) 108.8(4), C(2)-C(1)-Zn 122.8(6).
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